AWS Hygiene Scripts#
See also AUSPICES for setting up various hygiene scripts to automatically run in your AWS account.
Clean out old alarms#
Python:
import boto3
import time
filterstring = 'MyProjectName'
client = boto3.client('cloudwatch')
alarms = client.describe_alarms(AlarmTypes=['MetricAlarm'],StateValue='INSUFFICIENT_DATA')
while True:
for eachalarm in alarms['MetricAlarms']:
if eachalarm['StateValue'] == 'INSUFFICIENT_DATA':
if filterstring in eachalarm['AlarmName']:
client.delete_alarms(AlarmNames = [eachalarm['AlarmName']])
time.sleep(1) #avoid throttling
token = alarms['NextToken']
print(token)
alarms = client.describe_alarms(AlarmTypes=['MetricAlarm'],StateValue='INSUFFICIENT_DATA',NextToken=token)
Clean out old log groups#
Bash:
aws logs describe-log-groups| in2csv -f json --key logGroups > logs.csv
R:
(requires dplyr
and readr
)
library(dplyr)
library(readr)
read_csv(
"logs.csv",
col_types = cols_only(
storedBytes = col_integer(),
creationTime = col_double(),
logGroupName = col_character()
)
) %>%
mutate(creationTime =
as.POSIXct(creationTime / 1000,
origin = "1970-01-01")) %>%
filter(storedBytes == 0) %>%
select(logGroupName) %>%
write_tsv("logs_clear.txt", col_names = F)
Bash:
parallel aws logs delete-log-group --log-group-name {1} :::: logs_clear.txt